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EXAMPLES OF COMPUTED VIABILITY KERNELS
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Conflict control systems with state constraints are under consideration. A numerical method of constructing
viability kernels, i.e the largest subsets of state constraints where the system trajectories can be confined, is
applied to several nontrivial examples. The method can be interpreted as the approximate construction of
the Hausdorff limit of sets generated by a backward procedure based on differential games theory essentially
developed in works by N. N.Krasovskii and A. I. Subbotin. Numerically, the method is implemented in the
framework of computing level sets of approximate solutions to an appropriate Hamilton–Jacobi equation. The
main objective of the paper is the demonstration of nontrivial examples of computing viability kernels.
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Н.Д. Боткин, В.Л.Турова. Примеры численного построения ядер выживаемости.

Рассматриваются конфликтно-управляемые системы с ограничениями на фазовые состояния. Числен-
ный метод построения ядер выживаемости (наибольших подмножеств фазовых ограничений, где система
может удерживаться неограниченное время) применяется к некоторым нетривиальным задачам. Метод
может интерпретироваться как построение предельных множеств некоторой попятной процедуры, бази-
рующейся на на теории дифференциальных игр, существенно развитой в работах Н.Н.Красовского и
А.И.Субботина. Численная реализация метода выполнена на языке множеств уровня вязких решений
подходящего уравнения Гамильтона-Якоби. Основной целью статьи является демонстрация нетривиаль-
ных примеров построения ядер выживаемости.

Ключевые слова: дифференциальная игра, фазовое ограничение, ядро выживаемости, попятная про-
цедура, уравнение Гамильтона — Якоби, вязкое решение.
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1. Introduction

In many technical problems, it is required to keep a control system within a state constraint
in the presence of unpredictable disturbances. Viability theory (see [1]) can be considered as an
approach to the design of appropriate control laws. Notice that a viable subset of the state constraint
determines a feedback strategy which can keep the state vector within this subset. Such a feedback
strategy can be designed using the extremal aiming procedure proposed in [2]. A method for finding
viability kernels (maximal viable subsets of state constraints) is proposed in [3]. This method is
based on the necessary and sufficient viability conditions formulated in terms of contingent cones
and vectogramms. The monograph [4] considers a wide range of problems related to analysis and
construction of viable sets and viability kernels. Grid methods for constructing viability kernels have
been studied in works by V.N. Ushakov and his pupils (see e.g. [5]).

In papers [6–8], a method for finding viability kernels is described and theoretically analyzed.
The approach developed there is based on the theory of differential games (see [2]). The viability
kernel is constructed as the Hausdorff limit of sets generated by a backward procedure that produces
the time-sections of the so-called maximal stable bridges described in [2]. In [8], it was sketched
how this algorithm can be numerically implemented in terms of level sets of limiting solutions of an
appropriate Hamilton–Jacobi equation arising from conflict control problems with state constraints.

The present paper describes a slightly modified grid algorithm for computing viability kernels
and shows its application to nontrivial examples of conflict control problems.
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2. Differential game and viability kernels

In this section, some definitions related to viability theory are recalled.
Consider a conflict control system with the autonomous dynamics

ẋ = f(x, u, v), x ∈ R
n, u ∈ P ⊂ R

p, v ∈ Q ⊂ R
q. (1)

Here, x is the state vector; u and v are control parameters of the first and second players, respectively;
and P and Q are compacts of the corresponding dimensions. In the following, it is assumed that all
functions of x are defined on the whole R

n and have global properties. Thus, the right-hand side f
is supposed to be globally bounded, continuous in (x, u, v), and Lipschitzian in x.

Bearing in mind the conflict control system (1), consider for any v ∈ Q the differential inclusion

ẋ ∈ Fv(x) = co{f(x, P, v)}. (2)

Definition 1 (viability property [1]). A set K ⊂ R
n is called viable if for any x∗ ∈ K and any

v ∈ Q there exists a solution x(·) to the differential inclusion (2) with the initial state x(0) = x∗
such that x(t) ∈ K, t ≥ 0.

Definition 2 (viability kernel [1]). For a given compact set G ⊂ R
n, define V iab(G) as the

largest subset of G with the viability property. This subset is called the viability kernel of G.

Proposition 1 (see e.g. [1]). For any compact set G ⊂ R
n there exists a unique viability kernel

V iab(G) ⊂ G if there exists at last one viable subset of G.

3. Computation of viability kernels

The algorithm proposed in [8] for finding viability kernels utilizes ideas of dynamic programming.
Namely, a Pontryagin-like step-by-step backward procedure (see [9]) yielding a sequence of sets is
used. The new feature consists in the reduction of the time step at each backward iteration in such
a way that the time step tends to zero, but the sum of all time steps goes to infinity. The algorithm
looks as follows:

K0 = G,

Ki+1 =
⋂

v∈Q

[

⋃

x∈Ki

(x− δi+1Fv(x)) + δ2i+1βS
]

⋂

G. (3)

Here S is the unit ball in R
n, β = LM , L is the Lipschitz constant of Fv , and M = sup{|f | : f ∈

Fv(x), x ∈ R
n, v ∈ Q}.

Theorem 1 (see [8] for the proof). Let the sequence {Ki} be defined by (3), where the sequence {δi}
is such that δi → 0 and

∑

∞

i=1 δi = ∞. If Ki 6= ∅ for any i > 0, then there exists the Hausdorff limit,
lim
i→∞

Ki, and

lim
i→∞

Ki = V iab(G) 6= ∅.

Otherwise, if Ki = ∅ for some i > 0, there are no viable subsets of G.

4. Numerical implementation

The numerical method utilizes the idea of representation of the viability kernel as a level set of
an appropriate function. Suppose that the state constraint, G, is given by the relation

G = {x ∈ R
n, g(x) ≤ 0}, (4)
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where g is a continuous function. It is required to construct a function V representing the viability
set as follows:

V iab(G) = {x ∈ R
n, V (x) ≤ 0}. (5)

Define the Hamiltonian of the game (1) by the formula

H(x, p) = max
v∈Q

min
u∈P

p · f(x, u, v)

and consider the following Hamilton–Jacobi equation

H(x,∇V) = 0. (6)

A continuous function V is a viscosity solution of (6) if the following conditions hold.

(i) V(x) ≥ g(x) for all x ∈ R
n.

(ii) For any point y0 ∈ R
n and any function ϕ ∈ C1 such that V − ϕ attains a local maximum at

y0, the inequality H (y0,∇ϕ(y0)) ≤ 0 holds.

(iii) For any point y0 ∈ R
n satisfying the inequality V(y0) > g(y0) and any function ϕ ∈ C1 such

that V − ϕ attains a local minimum at y0, the inequality H (y0,∇ϕ(y0)) ≥ 0 holds.

The existence of a unique viscosity solution follows from the results of [10] (cf. Theorem 2.1) and [11].
Moreover, the function V satisfying conditions (i)–(iii) has the property

V iab({x ∈ R
n, g(x) ≤ c}) = {x ∈ R

n,V(x) ≤ c}.

Indeed, the condition (i) provides the embedding of the level sets of V into the corresponding
level sets of g. Condition (ii) provides the u-stability property of the function V. Condition (iii)
expresses the v-stability property at points y0 where V(y0) > g(y0) (i.e. in the interior of the state
constraint). Such a modification of the conventional definition of viscosity solutions was introduced
in the work [11] to describe conflict control problems with state constraints. See also [12] for the
relation between viability sets and viscosity solutions.

Our aim is to construct grid approximations of viscosity solutions of equation (6) and propose
a control procedure that guaranties an approximate non-increase of this grid approximation along
trajectories of the conflict control system (1).

Let h := (h1, . . . , hn) be spatial grid steps, and |h| := (
∑n

i=1 hi)
1/2. Use the notation

φh(xi1 , . . . , xin) := φ(i1h1, . . . , inhn)

so that the upper index “h” denotes the restrictions of φ to the grid.

Introduce an interpolation operator Lh mapping grid functions to continuous ones and satisfying
the estimate

‖Lh[φ
h]− φ‖ ≤ C|h|2 ‖D2φ‖ (7)

for all smooth function φ. Here, φh is, as usually, the restriction of φ to the grid, ‖ · ‖ the point-
wise maximum norm, D2φ the Hessian matrix of φ, and C a constant independent on the grid and
function φ.

It should be noticed that the estimate (7) is typical for interpolation operators (see e.g. [13])
because interpolation operators reconstruct not only the values but also the gradients of interpolated
functions.

Consider, for example, a multilinear interpolation operator. Introduce the functions ω0 = 1− ξ
and ω1 = ξ. Assume that a point x = (x1, x2, . . . , xn) lies in a grid cell whose origin is given by the
multiindex (ip1, ip2, . . . , ipn). The multilinear interpolation of a grid function φh reads:
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Lh[φ
h](x) =

ip1+1
∑

i1=ip1

. . .

ipn+1
∑

in=ipn

φh(xi1 , . . . , xin) ωi1−ip1

(x1 − xip1
h1

)

. . . ωin−ipn

(xn − xipn
hn

)

.

Use the following backward grid procedure applied to continuous functions defined on R
n:

Vℓ+1 = Πg[δ, h;Vℓ], V0 = g, ℓ = 0, 1, . . . , (8)

where the operator Πg is defined as follows:

Πg[δ, h;φ](x) = max{Π[δ, h;φ](x); g(x)}, x ∈ R
n (9)

with
Π[δ, h;φ](x) = max

v∈Q
min
u∈P

Lh[φ]
(

x+ δf(x, u, v)
)

, x ∈ R
n. (10)

The notation Lh[φ] assumes that the interpolation operator is computed using the values of the
function φ at grid nodes. In other words, Lh[φ] ≡ Lh[φ

h], where the upper index “h” denotes the
restriction of the function φ to the grid. Notice that the procedure (8)–(10) is closed with respect
to grid functions, i.e. we can compute the function Vℓ+1 in the grid nodes using only grid values of
the functions Vℓ and g. Thus, this procedure is numerically feasible.

The procedure (8)–(10) is related to the algorithm (3) in the following way. The shift f of the
argument of the function Lh[Vh

ℓ ] in (10) results in the opposite shift of level sets of φ. The minimum
over u results in the union of level sets of φ, and the maximum over v results in the intersection of
the level sets. Moreover, the maximum in (9) results in the intersection of the level sets with the
state constraint set G. Thus, the procedure (8)–(10) implements the algorithm (3) in terms of level
sets. The difference consists in the usage of a constant value of the backward time step δ.

To be more precisely, consider properties of the operators Π and Πg.

(j) It holds Π[ζ] = ζ for a constant function ζ.

(jj) The operator Π is monotone, i.e. if φ1 ≤ φ2 pointwise, then Π[δ, h;φ1] ≤ Π[δ, h;φ2] pointwise.
Obviously, the operator Πg is also monotone in this sense.

(jjj) The operator Π has the consistency property, i.e.

∣

∣

∣

∣

Π(δ, h;φ)(x) − φ(x)

δ
−H(x,∇φ)

∣

∣

∣

∣

≤ C‖D2φ‖
(

δ +
h2

δ

)

(11)

for any twice differentiable function bounded with its second derivative. Here C is a constant
independent on φ, δ, and h.

Property (j) follows from the definition of the operator Π and the property Lh[ζ] = ζ. Property (jj)
follows from the monotonicity of the operators Lh and “maxv minu”. Property (jjj) is being proven
using the expansion of the function φ and the estimate (7).

Remark 1. If the spatial steps are chosen to be proportional to a power of the time step,
h = Chδ

γ , γ ≥ 1, inequality (11) yields the conventional, one-parameter form, of consistency (see
e.g. [10] and [11]).

Using the monotonicity of the operator Πg, it is easy to see that the sequence of functions Vℓ is
monotonically growing and bounded from above. Indeed, applying the operator Πg to the obvious
inequality g = V0 ≤ V1 yields the relation V1 ≤ V2 and so on. Moreover, the inequality g ≤ C
(the function g is assumed to be bounded) implies the relation V1 = Πg[δ, h; g] ≤ max{C, g} ≤ C.
Repeating this implies the required result.

Therefore, the sequence Vℓ converges pointwise to a limiting, generally speaking, upper semi-
continuous function Vδ satisfying the relation
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Vδ = Πg[δ, Chδ
γ ;Vδ] = max

{

Π[δ, Chδ
γ ;Vδ], g

}

, (12)

assuming that the relation h = Chδ
γ , γ ≥ 1 holds.

Remark 2. If the viscosity solution, V, of equation (6) is a Lipschitz continuous function, and
all functions Vδ are uniformly Lipschitzian with respect to δ, then some adaptation (simplification)
of techniques of the work [11] provides the estimate

sup
x∈Rn

|Vδ − V| ≤ C1

√
δ.

In the general case, results of the work [10] provide the local uniform convergence of functions Vδ

satisfying the relation
Vδ = Π[δ, Chδ;Vδ ] (13)

to the viscosity solution of equation (6) without the condition “V(y0) > g(y0)” in (iii). A minimal
adaptations of the proof of Theorem 2.1 of [10] to the case of the presence of the condition “V(y0) >
g(y0)” in (iii) yields the local uniform convergence of the functions Vδ to V as δ → 0.

Proposition 2. The following discrete u-stability property of the function Vδ is true. If x⋆ is a
grid node such that Vδ(x⋆) ≥ g(x⋆), then for any v ∈ Q there exists u ∈ P such that Lh[Vδ](x⋆ +
δf(x⋆, u, v)) ≤ Lh[Vδ](x⋆) = Vδ(x⋆).

The validity of this proposition follows from the definitions of the operators Π and Πg and the
relation (12). �

It is worth to mention another way of constructing an operator satisfying the properties (j)–(jjj).
Define

Π̂[δ, h;φ](x) = φ(x) + δmax
v∈Q

min
u∈P

n
∑

i=1

(prighti f+
i + plefti f−

i ), (14)

with fi being the components of f(x, u, v), and

a+ = max {a, 0}, a− = min {a, 0},

prighti =
[φ(x1, . . . , xi + hi, . . . , xn)− φ(x1, . . . , xi, . . . , xn)]

hi
,

plefti =
[φ(x1, . . . , xi, . . . , xn)− φ(x1, . . . , xi − hi, . . . , xn)]

hi
.

The new operator Π̂ does not use any interpolation and can immediately be applied to a grid
function to return a grid function. The proof of the properties (j)–(jjj) can be found in [14].

The new numerical scheme formally assumes the same form as (8), i.e.

V̂ℓ+1 = Π̂g

[

δ, h; V̂ℓ

]

:= max
{

Π̂
[

δ, h; V̂ℓ

]

, g
}

, V̂h
0 = g, ℓ = 0, 1, . . . . (15)

The application of the method (15) requires holding the relation δ/h ≤ 1/(M
√
n) for all ℓ,

where M is the bound of Fv, see [11] and [14]. Nevertheless, numerical experiments show a very
nice feature of the method(15): in real computations involving bounded solution domains, the noise
coming from the boundary of the grid area is absent, and therefore the grid area should not be too
much larger than its part where the solution is searched. The procedure (8) does not possess such a
property, which requires larger grid areas. On the other hand, larger time steps δ are allowed, which
can compensate the use of larger grid regions.

Obviously, the functional sequence V̂ℓ is non-decreasing and bounded from above, and therefore
converges to a limiting function V̂δ. Moreover, Remark 2 holds true if Vδ is replaced by V̂δ.

Unfortunately, an analog of Proposition 2 (approximate u-stability) cannot be easily proven.
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5. Control procedure

In this section, the computation of optimal controls for system (1) using the procedure of
extremal aiming (see [2] and [15]) is described. Suppose that the right-hand side of (1) satisfies the
following saddle point condition:

max
u∈P

min
v∈Q

s · f(x, u, v) = min
v∈Q

max
u∈P

s · f(x, u, v) (16)

for all x and s from R
n.

Remember that the procedure (8) gives the values of the functions Vℓ in the grid nodes. These
values converge monotonically and relatively quickly to the grid values of the limiting function Vδ.
Thus, it is reasonable to assume that the values of Vδ are known exactly in the grid nodes, and
therefore the function Lh[Vδ] is known exactly.

Let tl = l · δ, l = 0, 1, . . . , be the time sampling of control process. Construct recursively a
sequence, {εk}, as follows:

ε0 = |h|, ε̄2k+1 = ε2ke
Lδ +Rδ2 + r(δ), εk+1 = ε̄k+1 + |h|, k = 0, 1, . . . , (17)

where the constant R and function r(δ) are defined below by formula (19).
Assume tk and x(tk) being the current time instant and the state, respectively. Consider the

neighborhood
Uεk(x(tk)) = {x ∈ R

n : |x− x(tk)| ≤ εk} (18)

of the current state. Search through all grid points xh ∈ Uεk(x(tk)) and find a point xhk such that

Vδ(x
h
k) = min

xh∈Uε
k
(x(tk))

Vδ(x
h).

The current control u(tk) of the first player applied on the time interval [tk, tk+1] is computed
from the condition of minimum projection of the system velocity f

(

x(tk), u, v
)

onto the direction
of the vector x(tk)− xhk , i.e.

u(tk) = argmin
u∈P

max
v∈Q

(

x(tk)− xhk
)

· f
(

x(tk), u, v
)

.

Let v(ξ) be an unknown control of the second player on the interval [tk, tk+1]. Introduce an
auxiliary guide whose dynamics is described by the relation

y(tk+1) = y(tk) + δf(y(tk), u, v),

where the choice of controls u and v is at our disposal. Introduce an additional vector v0 ∈ Q
satisfying the relation

v0 = argmax
v∈Q

min
u∈P

(

x(tk)− xhk
)

· f
(

x(tk), u, v
)

.

Assume that the guide starts from the state y(tk) = xhk . According to Proposition 2, for the
control vector v0 there exists a control vector ū ∈ P such that

Lh[Vδ](x
h
k + δf(xhk , ū, v

0)) ≤ Lh[Vδ](x
h
k) = Vδ(x

h
k).

In other words,
Lh[Vδ](y(tk+1) ≤ Lh[Vδ](y(tk)).

Estimate the distance |x(tk+1)− y(tk+1)|. It holds

x(tk+1) = x(tk) +

tk+δ
∫

tk

f(x(ξ), u(tk), v(ξ))dξ,

y(tk+1) = y(tk) +

tk+δ
∫

tk

f(y(tk), ū, v
0)dξ.
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Therefore,

x(tk+1)− y(tk+1) = x(tk)− y(tk)

+

tk+δ
∫

tk

[

f(x(tk), u(tk), v(ξ)) − f(x(tk), ū, v
0)
]

dξ

+

tk+δ
∫

tk

[

f(x(ξ), u(tk), v(ξ)) − f(x(tk), u(tk), v(ξ))
]

dξ

+

tk+δ
∫

tk

[

f(x(tk), ū, v
0)− f(y(tk), ū, v

0)
]

dξ.

Squaring the both sides of the above equation, accounting for the choice of u(tk) and v0, and
assuming that x(tk)− y(tk) lies in a bounded domain for all k yield the estimate

|x(tk+1)− y(tk+1)|2 ≤ |x(tk)− y(tk)|2eLδ +Rδ2 + r(δ) ≤ ε̄2k+1,

where
R = 12M2 +MLD, D = sup

k
|x(tk)− y(tk)|, r(δ) = 4LM2δ3 + L2M2δ4. (19)

Notice that, according to the relations (17), the grid cell containing y(tk+1) entirely belongs to
Uεk+1

(x(tk+1)), and therefore this grid cell has a node xhk+1 such that

Lh[Vδ](y(tk+1) ≤ Lh[Vδ](x
h
k+1) = Vδ(x

h
k+1).

Thus, the above described process can be repeated for the interval [tk+1, tk+2]. Finally, assuming
that |h| = Chδ

√
δ and proving the estimate ε2k ≤ CδeLtk , where C is a constant depending on L,

M , and D, yield the estimate Vδ

(

x(tk)
)

≤ Vδ

(

x(t0)
)

+G
√
Cδ1/2eLtk/2 with G being the Lipschitz

constant of the function Vδ.

Remark 3. It should be noticed that the growth rate of the neighborhood Uεk with respect to k
is large enough in theoretical considerations. In practical simulations, the value εk is defined as a
minimum value such that

min
xh∈Uε

k
(x(tk))

Vδ(x
h) ≤ min

xh∈Uε0
(x(t0))

Vδ(x
h).

Numerical results show that εk defined according to this rule grows relatively slowly with k or remains
constant.

Remark 4. The control procedure of the second player is being designed in a similar way as for
the first player. The difference consists in the use of the function V̄δ satisfying the relation, cf. (12),

V̄δ = Π̄g[δ, Chδ
γ ; V̄δ] := max

{

Π̄[δ, Chδ
γ ; V̄δ], g

}

,

where the operator Π̄ is defined as, cf. (10),

Π̄[δ, h;φ](x) = min
u∈P

max
v∈Q

Lh[φ]
(

x+ δf(x, u, v)
)

, x ∈ R
n.

The last operator has the approximate v-stability property (cf. Proposition 2), which allows us to
repeat the above arguments and design a control rule of the second player guaranteeing the estimate

V̄δ

(

x(tk)
)

≥ V̄δ

(

x(t0)
)

− Ḡ
√
Cδ1/2eLtk/2,

where Ḡ is the Lipschitz constant of the function V̄δ.
It should be noted that numerical experiments show that the difference maxxh |V̄δ(x

h)− Vδ(x
h)|

is very small (less then δ2) if the condition (16) holds, and therefore the function Vδ can be used for
the control design of the second player.
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Remark 5. Remember that the function V̂δ constructed with the difference operator (14) does
not evidently possess the approximate u-stability property (cf. Proposition 2). Therefore, the above
described procedure of control design for the first player is not applicable in this case. Nevertheless,
a method described in [16] can apparently be adapted, which demands an additional investigation.

6. Examples

6.1. A pendulum with a movable suspension point

The first example serves to the purpose of comparing results obtained by the application of the
grid algorithm (15) with an exact analytical solution found in [17].

A pendulum with the movable suspension point is under consideration. It is assumed that this
point can move with the velocity u. The performance is disturbed by a horizontal force v applied to
the suspended load. This force is caused, e.g., by wind gusts. Denote by x1 the angle deviation from
the vertical axis, and let x2 be the velocity of the suspended load in the ground reference system.
These variables satisfy the equations

{

ẋ1 = β(x2 − u),
ẋ2 = −αx1 + v,

(20)

where α and β are positive constant coefficients depending on the suspended mass and pendulum’s
length. The controls u and v are bounded as follows:

|u| ≤ µ, |v| ≤ ν, (21)

and the following state constraints are imposed:

|x1| ≤ a, |x2| ≤ b. (22)

The first player controlling the parameter u strives to maintain the state constraints. The second
player dealing with the control parameter v tends to violate the state constraints. Assume that
β = 1, otherwise this can be achieved by proper time scaling.

This problem was analytically solved in [17] for all values of the parameters a, b, µ, ν, and α.
The most interesting case corresponds to the following relations between the parameters:

b ≥ µ and |
√
αa− b| ≤ µ− ν/

√
α.

In this case, the boundary of the viability kernel includes parts of all edges of the state constraint
(see Fig. 1 to the right).

The viability kernel was analytically constructed using four families of ellipses of the form

1

α
(αx1 − v)2 + (x2 − u)2 = C. (23)

The families, I–IV, correspond to the following pairs of the controls u and v (see Fig. 1 to the left):

I: {µ, ν}; II: {−µ, ν}; III: {−µ,−ν}; IV: {µ,−ν}. (24)

In the analytical construction, the ellipses from the families I, II, III, and IV passing through the
points p1, p2, p3, and p4, respectively, were used. The points d1, d2, d3, and d4 were obtained as
common points of the corresponding ellipses and the edges of the state constraint. Notice that the
conjunction at the points p1, p2, p3 and p4 is smooth.

In the numerical construction based on the application of the grid algorithm (15), the following
values of the parameters are chosen: a = 6, b = 4, µ = 1, ν = 0.3, and α = 0.5. The function g
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Fig. 1. Four families of ellipses (left) and the schematic structure of the viability kernel (right).

-2

- - -6 4 2            0             2             4             6

-4

2

4

d1

p1

Fig. 2. The viability kernel computed numerically: p1 = (6, 1) and d1 = (3.95, 4). The exact values of p1 and
d1 are (6, 1) and (3.94, 4), respectively.

defining the state constraint is of the form g(x1, x2) = max{|x1|/a, |x2|/b} − 1. The time step δ is
chosen as δ = 0.001. The grid is obtained by dividing the region [−7, 7]2 into 1000 × 1000 square
cells. Computations using the algorithm (8) show that

max
over grid

|Vh
ℓ+1 − Vh

ℓ | < 10−6 if l ≥ 8000,

which is the stop criterion. The runtime on a common laptop with a 4 core/8 thread processor
is approximately 1 min. Figure 2 shows the viability kernel obtained as V iab(G) = {(x1, x2) :
Vh
ℓ (x1, x2) ≤ 0}. The computed coordinates of the points p1 and d1 are equal (6, 1) and (3.95, 4),

respectively, whereas the analytically found values are (6, 1) and (3.94, 4), respectively. This proves
the validity of the numerical algorithm (8). It should be noted that the algorithm (15) yields
practically the same, visually indistinguishable, approximation of the viability kernel.

6.2. Acoustic version of the homicidal chauffeur game

The homicidal chauffeur game was firstly considered in [18]. In this game, the first player, a
car whose minimum turn radius is bounded from below, strives to capture the second player, an
inertia-less pedestrian, as soon as possible. The linear velocity of the car is assumed being constant,
the magnitude of pedestrian’s velocity is bounded by a given value. The car is controlled by changing
the rate of turn of the linear velocity, whereas the pedestrian changes his velocity arbitrarily within
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Fig. 3. Movable reference coordinate system in the homicidal chauffeur game.
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Fig. 4. To the left: the state constraint (light-grey). To the right: the viability kernel (white). The viability
kernel consists of two disconnected parts. A trajectory corresponding to the optimal strategies of the players
goes downwards and stops forever near the bottom of the small part.

the prescribed bounds. The original system consists of five differential equations, but it can be
reduced (see [18]) to the following two-dimensional model:

ẋ = −yu+ v1,

ẏ = xu+ v2 − 1,

|u| ≤ 1,
√

v21 + v22 ≤ ν

(25)

written in a movable reference frame with y-axis directed along the car velocity vector (see Fig. 3).
The problem statement where the bound ν depends on the state (x, y) is known (due to Pierre
Bernhard) as the acoustic version of the homicidal chauffeur game. The following case:

ν(x, y) = ν∗min
{

1,
√

x2 + y2/s
}

,

where ν∗ and s are some positive constant parameters, was considered in [19] and [20].
Reformulate the problem as follows. Introduce the state constraint

G = [−c, c]2 \ [−a, a]× [−b, 0]

(see Fig. 4 to the left) given by the formula

g(x, y) := max
{

max{|x/c|, |y/c|} − 1; 1−max{|x/a|, |2y/b + 1|}
}

≤ 0.

The second player dealing with the control parameters v1 and v2 aims to maintain the state
constraint, and the opposite player managing the control parameter u has the opposite objective.
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Thus, one of the objectives of the first player is to bring the state vector to the set Γ = [−a, a] ×
[−b, 0], and the second player strives to avoid that. This establishes the relation with the original
problem formulation used in [20] where Γ is considered as the target set of the first player.

The following values of the parameters are chosen in the numerical simulation based on the
algorithm (8)–(10): c = 5, a = 4.5, b = 0.2, ν∗ = 1.5, s = 0.9375. The time step δ is chosen as
δ = 0.001. The grid is formed by dividing the region [−7, 7]2 into 1000 × 1000 square cells, and
16000 iterations of the algorithm (8)–(10) are done.

Figure 4 shows the state constraint (to the left) and the computed viability kernel (to the
right). The last consists of two disconnected parts. A trajectory started at a point of the small part
and computed using optimal control strategies described in Section 5 goes downwards and remains
forever near the bottom of the small part.

6.3. In-plane nonlinear double pendulum

This example demonstrates the treatment of a high-nonlinear system whose state vector lies
in R

4. In this case the algorithm (8)–(10) is more preferable because it allows us to choose larger
time steps (see the remark at the end of Section 4). Figure 5 shows a sketch of the pendulum. The
notations are self-explanatory. The control is the torque applied at the suspension point, and the
disturbance is associated with wind. It is assumed that the force exerted by the wind on an linear
element of the pendulum is computed as the product of the wind strength and the cosine of the
angle between the element and wind directions.

The governing equations read

θ̇1 =
6

ml2
2 p1 − 3 cos(θ1 − θ2) p2
16− 9 cos2(θ1 − θ2)

,

θ̇2 =
6

ml2
8 p2 − 3 cos(θ1 − θ2) p1
16− 9 cos2(θ1 − θ2)

,

ṗ1 = −1

2
ml2

[

θ̇1θ̇2 sin(θ1 − θ2) + 3
g

l
sin θ1

]

+ u+ vl2
[1

2
cos2 θ1 + cos θ1 cos θ2

]

,

ṗ2 = −1

2
ml2

[

−θ̇1θ̇2 sin(θ1 − θ2) +
g

l
sin θ2

]

+ vl2
1

2
cos2 θ2.

l

l

θ2

θ1

mg

mg

✛

✛

✛

v

wind

u

Fig. 5. Sketch of an in-plane nonlinear double pendulum. The control parameter is the torque applied at the

suspension point, and the disturbance is associated with wind.

Here, p1 and p2 are the so-called generalized momenta defined by the relation
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pi =
∂L

∂θ̇i
, i = 1, 2,

where

L =
1

6
ml2

[

4θ̇21 + θ̇22 + 3θ̇1θ̇2 cos(θ1 − θ2)
]

+
1

2
mgl(3 cos θ1 + cos θ2)

is the Lagrangian of the system (kinetic energy minus potential energy).
Assume that the control and the disturbance are bounded as follows:

|u| ≤ 1, |v| ≤ 0.1,

and the state constraint G ∈ R
4 is defined by the inequality g(p1, p2, θ1, θ2) ≤ 0, where

g(p1, p2, θ1, θ2) = max
{
√

p21 + p22, |θ1|/2.6, |θ2|/2.6
}

− 1.

Therefore, the central p1, p2 cross-section of the state constraint is the unique circle (see Fig. 6, to
the left), and the central θ1, θ2 cross-section is 2.6 × the unit square (see Fig. 6, to the right).
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Fig. 6. To the left: the central p1, p2 cross-section of the state constraint and the viability kernel; the p1, p2
projection of the trajectory computed using optimal strategies of the players. To the right: the same but for
the central θ1, θ2 cross-section and θ1, θ2 projection.
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Fig. 7. The enlarged pictures, without the cross-sections of the state constraint, from Fig. 6.
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In the numerical computations, the time step δ is chosen as δ = 0.01. The grid is formed by
dividing the region [−1.2, 1.2]2 × [−3, 3]2 into 402 × 1002 cells, and 8000 iterations of the algorithm
(8)–(10) are done.

Fig. 6 (to the left) shows the central p1, p2 cross-section of the viability kernel and the p1, p2
projection of a trajectory corresponding to the optimal control laws described in Section 5. The
trajectory remains in the viability kernel arbitrary long.

Fig. 6 (to the right) shows the central θ1, θ2 cross-section of the viability kernel and the θ1, θ2
projection of the trajectory.

Fig. 7 shows the enlarged pictures, without the cross-sections of the state constraint, from Fig. 6.

7. Conclusions

In this work, viability kernels for some nontrivial problems are computed using numerical
procedures developed by the authors in the framework of grid methods for solving differential games.
Theoretically, these numerical procedures are suitable for arbitrary dimensions of the state vector.
Currently, the maximal number of processors used in the computations is up to 32, which allows
us to handle nonlinear problems of the dimension less or equal to four. The usage of supercomputing
systems with large number of processors and the utilization of sparse representations of grid functions
will enable us to advance our capabilities towards higher dimensionality. This should support the
treatment of e.g. aircraft applications related to essentially nonlinear takeoff and landing problems
with complex state constraints.
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Internat. Soc. Dynam. Games, 4).

20. Patsko V. S. and Turova V. L. Level sets of the value function in differential games with the
homicidal chauffeur dynamics // Game Theory Review. 2001. Vol. 3, no. 1. P. 67–112.

Received February 14, 2015

Nikolai D. Botkin
Technische Universität München, Fakultät für Mathematik
Boltzmannstr. 3, 85747 Garching, Germany
e-mail: botkin@ma.tum.de

Varvara L. Turova
Technische Universität München, Fakultät für Mathematik
Boltzmannstr. 3, 85747 Garching, Germany
e-mail: turova@ma.tum.de


